
Magnetic devices analysis by Face FEM coupled with standard
reluctance network

Anderson S. Nunes1,4, Olivier Chadebec2,3, Gérard Meunier2,3 and Patrick Kuo-Peng4

1Engineering Simulation & Scientific Software (ESSS), Rua Orlando Phillipi, no 100, Edifı́cio Techplan, 1o andar,
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A Finite Element Method (FEM) mesh is converted to a reluctance network through an original magnetostatic formulation based on
face shape functions. This meshed reluctance network is coupled with an standard one, characterizing a 0D system. Both approaches
are fully-compatible and the hybridized problem can be solve with a single circuit solver. The approach is tested in 2D on a magnetic
circuit with an air gap and compared to classical FEM nodal formulation.
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I. INTRODUCTION

Optimizing electromagnetic devices can require a large
amount of data that might be provided by numerical simu-
lations. Many numerical methods are used to model electro-
magnetic devices, but the RNM (Reluctance Network Method)
and FEM (Finite Element Method) are the most widely used
for magnetostatic modeling.

The FEM is well known by its flexibility and generality,
once the mathematical formulations are based on a mesh.
Furthermore, it is noticeable the knowledge base available for
this method, for instance [1]. However, it leads to an high
number of degrees of freedom and so quite long computation
times.

On the other hand, the RNM is one of the most primitive
methods for magnetic modeling and its application is based
on a reluctance network. This method has remained useful
due to its coherent results obtained with low computational
effort and low computational simulation time [2] and has been
largely applied to model power transformers [3] [4]. This
method is also largely applied to model rotating electrical
machines [5][6][7] and transmission lines [8]. Nevertheless,
it is important to notice that these applications are based on
a reluctance network defined manually, that might imply an
hard, long and non-general task.

In [9] is presented a methodology that couples nodal/edge
FEM with external reluctances network. In this paper, we go a
step forward by proposing a formulation fully-compatible with
both numerical approaches and solved with a single 0D circuit
solver.

Finally, the results of modeling a actuator with the classical
nodal FEM and with the proposed methodology are compared.

II. MAGNETOSTATIC FACE FEM FORMULATION

The magnetostatic fields might be described by the Ampère’s
(1) and Gauss (2) laws and the constitutive relation for mag-
netic materials (3).

curlH = J (1) divB=0 (2) B = µH (3)

where the magnetic field H, in A/m, is composed by the
fields H0, due to an imposed current density source J0, and
Hm that can be obtained from the gradient of the magnetic
scalar potential Vr, as presented in (5).

H = H0 + Hm (4) Hm = −∇Vr (5)

Thus, applying (5) in (4) and integrating the resulting
equation along a domain Ω, it is possible to obtain (6), for
which W is the face interpolation function.∫

Ω

Wi ·H dΩ +

∫
Ω

Wi · ∇Vr dΩ =

∫
Ω

Wi ·H0 dΩ (6)

Since the magnetic induction B, in T , is given by (7), the
left side of (6) is rewritten as (8).

B =

nf∑
j=1

WiΦi (7)

∫
Ω

Wi ·HdΩ =

nf∑
j=1

∫
Ω

(
υWi ·WjdΩ

)
Φj (8)

where j and i are the faces index, nf is the number of faces,
υ is the magnetic reluctivity, and Φ is the magnetic flux.

Applying the divergence theorem in the second term of (6)
and evaluating it along two adjacent elements Ωa and Ωb, leads
to (9). Taking into account that the normal component of the
function W is constant along the face shared by Ωa and Ωb,
its second term becomes null and it can be rewritten as (10).

∫
Ωa+Ωb

Wi · ∇VrdΩ =

∮
Γa−Γb

VrWi · ndΓ−
∫

Ωa+Ωb

Vr
(
∇ ·Wi

)
dΩ

(9)



∫
Ω

Wi · ∇VrdΩ = −
∫

Ωa+Ωb

Vr
(
∇ ·Wi

)
dΩ (10)

This equation can be split in terms of Ωa and Ωb, where the
flux direction is defined from Ωa to Ωb. Then, considering that
∇ · wi is the inverse of the element volume, it is possible to
obtain (11). ∫

Ω

Wi · ∇VrdΩ = Vr a − Vr b (11)

The third term of (6) is the magnetic field due to an imposed
current density J0, which can be obtained using Biot-Savart
law, for instance.

Finally, lets rewrite (6) as the following matrix system

[<] [Φ]− [∆VMean] = [H0] (12)

where [<] is a reluctance matrix,[Φ] is the unknown flux
matrix, [∆VMean] is the magnetic potential jump between two
reluctances and [V0] contains the fmm sources.

Besides the matrix system is stated, (2) is not solved yet.
Nevertheless, the B free divergence is constrained solving (12)
as a circuit system , where the Kirchhoff’s current law is
imposed. It suggests that the solution can be obtained by the
use of a 0D circuit solver.

III. MODEL AND RESULTS

In order to compare the results obtained with the proposed
methodology, a simple magnetic circuit with an air gap is
analyzed using the well established nodal first order FEM,
based on magnetic vector potential A. The magnetic induction
distribution is presented in Fig. 1.

Fig. 1. Magnetic induction distribution obtained with classical FEM

Then, this model is reduced to a 0D model, i.e most of the
magnetic circuit is modeled by an classical reluctance network
and just the air gap region is meshed (i.e. the region where
the equivalent reluctance network is not so easy to define),
as presented in Fig. 2. Then the problem is solved by a
circuit solver and magnetic induction is interpolated using (7),
resulting in Fig. 3.

The maximum magnetic induction in the air gap obtained
with the proposed methodology is 0.625 T and with the
classical FEM is 0.606 T, that represents a difference of 3.13%.

Fig. 2. Networks coupling

Fig. 3. Magnetic induction distribution along the air gap region, obtained with
Face FEM.

IV. CONCLUSION

This paper has presented a methodology capable to convert
a FEM mesh into a reluctance network, allowing its easy
coupling with a classical network obtained analytically. The
original model was reduced to a 0D system keeping coherent
results.
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